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A numerical investigation of vortex breakdown has been undertaken in an 
attempt to understand its properties, and the mechanisms responsible for it. 
Solutions of the full steady axisymmetric Navier-Stokes equations for breakdown 
in an unconfined viscous vortex have been obtained for core Reynolds numbers up 
to 200, for a two-parameter family of assumed upstream velocity distributions. 
Diffusion and convection of vorticity away from the vortex core, and the strong 
coupling between the circumferential and axial velocity fields in highly-swirling 
flows, are shown to lead to stagnation and reversal of the axial flow near the axis. 
The various theories of vortex breakdown are considered in light of the present 
numerical solutions. 

1. Introduction 
Several theoretical interpretations of vortex breakdown have been proposed, 

both viscous and inviscid, with varying degrees of explanatory capability. They 
include the critical-state and finite-transition concepts of Squire (1960), Benjamin 
(1962, 1965a, b, 1967), Bossel (1967) and Randall & Leibovich (1973), and the 
so-called boundary-layer separation analogy of Gartshore (1962, 1963), Hall 
(1966, 1967) and Mager (1972). None of these has gained general acceptance, 
however, owing to both a lack of experimental confirmation and questions 
about the appropriateness of assumptions made in the analyses on which they are 
based. In  response to this latter problem, a numerical investigation has been 
undertaken. In  this study we present numerical solutions of the full Navier- 
Stokes equations for an unconfined axisymmetric viscous vortex, which exhibit 
many of the features associated with vortex breakdown. Solving the full equa- 
tions numerically requires no assumptions about the flow, except that it be 
axisymmetric and laminar, and no approximations other than those inherent in 
the finite-difference formulation. The imposition of axisymmetry is an unfortu- 
nate economic necessity; nevertheless, based on this study and the previous 
analyses of others, the authors believe that the fundamental mechanisms 
responsible for the breakdown of an axisymmetric vortex flow are axisymmetric 
in nature. Solutions of the axisymmetric equations should, therefore, yield 
meaningful insight into the phenomenon. We shall assume that the flowislaminar, 
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since, even if the assumption is not satisfied throughout the flow, there is reason 
to believe that the dynamics of breakdown can still be elucidated. 

There are a t  least two previous studies of axisymmetric swirling flows exhibit- 
ing breakdown-like behaviour based on numerical solutions of the full viscous 
equations. Kopecky & Torrance (1973) (see also Torrance & Kopecky 1971) 
obtained numerical solutions for swirling flow in a constant-radius tube for 
Reynolds numbers, based on the mean axial velocity and tube radius, up to 1000. 
Unfortunately, they used a very coarse computational grid, and a form of 
upwind differencing which is only first-order accurate, and which introduces 
both false convection and diffusion (Torrance 1968). The solutions exhibit the 
pronounced retardation and stagnation of the axial flow characteristic of 
vortex breakdown for sufficiently high values of swirl. The breakdown bubbles 
obtained from these solutions are, however, very different in appearance from 
those observed experimentally by Harvey (1962) in a constant-radius tube and 
by Sarpkaya (197la,b) in a diverging tube (see figure 2(a),  plate 1).  Lavan, 
Nielsen & Fejer (1969) also obtained numerical solutions for viscous swirling 
flow in a constant-radius tube. Although solutions were obtained that exhibited 
axial flow reversal, they were able to consider only very low Reynolds number 
flows (no greater than 20). 

In  an inviscid calculation of swirling flow in a tube, Bossel (1967) used super- 
position to  obtain solutions of the stream function equation, which exhibit axial 
flow reversals and corresponding bubbles similar in appearance to some of those 
observed by Sarpkaya (1971 a). The occurrence of these breakdown-like struc- 
tures depended, however, not only on the assumed rotation rate of the flow 
upstream but also, quite strongly, on the assumed stream function distribution 
downstream; solutions exhibiting more than one retardation of the axial flow, as 
are observed in some experiments, were not obtained. The ad hoc nature of those 
downstream conditions makes the results difficult to interpret and, as Hall (1972) 
suggested, Bossel’s main contribution is a demonstration of the consistency 
between abrupt changes in flow structures and the critical state. 

Kopecky & Torrance (1973) made only a modest attempt to consider the 
various explanations and experimental observations of breakdown in the light 
of their numerical solutions; and Lavan et al. (1969) made no attempt whatsoever. 
Based on his results, Bossel (1967) described breakdown simply as a “pheno- 
menon peculiar to supercritical rotating flows which have swirl valuesvery closeto 
the critical swirl value”. In  this study, special attention is paid to an evaluation 
of theories of breakdown in light of the numerical solutions presented herein. 

2. Mathematical model 
If we assume axial symmetry, and that the flow is steady in a co-ordinate 

system fixed with respect to the vortex generator (e.g. a lifting wing), the momen- 
tum equations for an incompressible flow in terms of cylindrical co-ordinates 
( r ,  8, z),  with corresponding velocity components (u, v, w), reduce to 

(2.1) 



and 

Mass conservation may be expressed as 

Lengths have been non-dimensionalized by a characteristic core radius 6, 
velocities by the free-stream axial velocity W,, and pressure by pWZ, after 
subtraction of p,, the uniform static pressure far from the vortex. The core 
Reynolds number is defined as Re E WmS/v. Since this system of equations is 
elliptic, appropriate conditions must be specified on the entire boundary of the 
domain; to avoid the difficulties associated with infinite domains, conditions 
that approximate those expected in a real vortex flow will be applied at khe 
boundary of a sufficiently large finite region. Therefore, if we choose the core 
radius at  z = 0 as S, conditions are specified on the boundary of 0 < r < R, 
0 6 z 6 L where R and L are much larger than one. 

At the upstream boundary x = 0, the velocities are specified function of r. In  
particular we choose 

u(r) = 0 for 0 6 r < R, (2.5) 

for 0 < r < 1, (2.6) 

w(r) = V/r  and w(r) = 1 for 1 < r < R. (2.7) 

v(r )  = Vr(2 - r2)  and w(r) = a + (1 -a) r2(6 - 8r + 3r2) 

a and V are defined below. At the downstream boundary, z = .L, 0 < r < R, 
au av aw 
az az az 

-0,  -- - 0  and - = o .  _-  

At the axis, r = 0, 0 < x 6 L, 
aw 
ar 

u = O ,  v = O  and - = O .  

At the radial boundary, r = R, 0 < x 6 L, 

v = V/B and w =  1. (2.10) 

The upstream conditions at  z = 0 were chosen to approximate the experi- 
mentally-measured velocity in vortex cores such as those of trailing vortices, 
and were used by Mager (1972) in his integral analysis of breakdown. V is the 
specified circumferential velocity at  the core edge; it is equal to the circiulation 
around the core after non-dimensionalization by 27rrSWm. The cubic form of v(r)  
allows solid-body-like rotation near the core centre, and a smooth transition to 
irrotational flow at the core edge. The circumferential velocity is a maximum 
at r = ,,/+, and is equal to 1.088 V .  The quartic distribution of axial velocity in the 
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core joins smoothly a t  the core edge with the uniform axial flow outside, and is 
such that shear vanishes at the axis. The parameter a is the ratio of the axial 
velocity a t  the core centre to the velocity in the free stream; setting a greater or 
less than one yields jet-Iike or wake-like profiles, respectively. Uniform axial 
flow results when a = 1. 

The conditions a t  z = L are based on the assumption that far enough down- 
stream axial gradients become negligibly small. This requirement is far less 
restrictive than an a priori specification of the solution downstream; and, 
although some small error is introduced, its effect upstream is limited if L is 
sufficiently large, as a numerical investigation described in 5 3 demonstrates. 
Similar conditions for primitive (v, p )  variable formulations at outflow boundaries 
have been used by several authors (e.g. Fortin, Peyret & Temam 1971). 

The axis ( r  = 0) conditions result from mass conservation, and from .the 
requirement that shear stress at  the axis vanish. Conditions at r = R are based 
on the assumption that phenomena occurring near the axis, including break- 
down, have a negligible effect on the circulation and the axial velocity at large 
distances from the axis. The condition a(ur)/ar\,.=R = 0 is obtained from con- 
tinuity and allows fluid flux through the boundary. 

Co-ordinate transformation 

Vortex breakdown is essentially localized in the vortex core, so that good resolu- 
tion and a finely-spaced grid are required in and near the core. Concomitantly, 
the boundary conditions at  z = L and r = R imply that derivatives in the axial 
direction sufficiently far downstream, and in the radial direction outside the 
core, become increasingly small with increasing r and 2. A co-ordinate trans- 
formation, which stretches the region near the axis radially and the region near 
the upstream boundary axially, while contracting the more distant regions, is 
therefore advantageous. The transformations adopted are 

1 1 
y=- ln( l+r /b) ,  x =-ln(I+z/d).  

These have been used in a number of problems (e.g. Pao & Daugherty 1969), 
and have been applied in this study to map the region 0 < r < R, 0 < z < L onto 
0 < y < +, 0 < x < 1, The values of a, b, c and d are determined from the specified 
values of R and L, and the desired number and distribution of grid points in each 
co-ordinate direction. 

In  terms of the transformed independent variables x and y, the transformed 
equations of motion are 

a c 

(2.11) 
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and (2.14) 

where f (y) = exp ( - ay)/ab, gty) = - exp ( - 2ay)/ab2, 

s (x)  = exp ( - cz)/cd, t ( x )  = - exp ( - 2cx)/cd2, 

The transformed boundary conditions are as follows. For x = 0, 0 6 y 6 4, 
and h(y)  = l/r(y). 

u, v and u7 are specified functions of r (y) ,  (2.16;) 

as given previously. For x = 1, 0 6 y 6 4, 
au av aw - = o ,  - -  - 0 and - = 0. 
ax ax ax 

For 0 6 x 6 1, y = 0, 

For 0 6 x 6 1, y = fr, 
u = 0, v = 0 and aw/ay = 0. 

u+-- f au = 0, v =  V / R  and w =  1. 
h aY 

(2.16) 

(2.17) 

(2.18) 

3. Numerical method 
Chorin’s ‘artificial compressibility’ technique (Chorin 1967) was used to solve 

(2.11)-(2.14). The method is simple, efficient, and has a significant advantage 
over other primitive variable techniques, in that the solution of a Poisson equa- 
tion for pressure, and consequently boundary conditions for the pressure, are not 
required. The method can be described as follows. 

An auxiliary system of equations based on the general equations of motion 
for a steady, incompressible flow is introduced. The equations are 

(3.1), (3.2) 
av 1 aP -+v .vv  = -vp+-v=v, y - + v . v  = 0. 
a7 Re a7 

This new system features a time-like dependence on a new variable r, and the 
replacement of the kinematic constraint, that the velocity field be divergence- 
free, by (3.2), which permits a simple explicit variation of the pressure field. 
These auxiliary equations may be solved numerically from arbitrary initial 
conditions to a steady (i.e. r-independent) limit, using any of a large variety of 
finite-difference schemes developed for initial-value problems. Then, since steady 
solutions of (3.1) and (3.2) necessarily satisfy the steady equations, the resulting 
numerical solution satisfies the original differential equations to the spatial order 
of accuracy of the particular difference scheme used. The artificial compressibility 
y plays a role similar to a relaxation parameter, and vanishes from the steady 
solution. The technique has been successfully applied with various difference 
schemes to a number of problems (Chorin 1967; Plows 1968; Fortin et ab. 
1971). 

The artificial compressibility method was applied to the transformed equa- 
tions and boundary conditions, (2. l l)-(2.18). The transformed auxiliary equa- 
tions are (2. l l)-(2.14) with the additional terms au/ar, av/&, aw/ar and yap/ar, 
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respectively, An alternating-direction-implicit (ADI) finite-difference scheme 
(Peaceman & Rachford 1955) was used to compute the solution. (For details, 
see Grabowski 1974.) Centred differences were used for all spatial derivatives, 
including convective term. Pressure was defined on a staggered grid system, in 
order both to increase the accuracy of the scheme, and to avoid the necessity of 
calculating its variation at the boundaries. The spatial truncation error of the 
scheme is O[(AX)~ + ( A Y ) ~ ]  and, except for the effects of fist-order approxima- 
tions for the derivative boundary conditions, the errors in the solutions are of 
the same order. 

Analyses of linearized models of the Navier-Stokes equations suggest that 
a numerical solution should satisfy the criterion that the cell Reynolds number, 
Reh, where h is either Ax or Ay, be O( 1) (see 8.g. Roache 19721, although the less 
restrictive requirement that Reh2 - O( 1)  is also sometimes suggested. We have 
found, nevertheless, as have others (see e.g. Hirsch & Rudy 1974) that it is 
possible to obtain numerical solutions for which the cell Reynolds numbers are 
an order of magnitude larger. Such is the case for all of the solutions presented 
here. While the penalty usually associated with large cell Reynolds number 
solutions is degradation of accuracy, the computational mesh used here is such 
that a greater number of grid points are present in those regions in which a lack 
of resolution and degradation of accuracy :might be anticipated, somewhat 
alleviating this difficulty. 

The results of the effort to determine an optimum value of the artificial corn- 
pressibility were inconclusive, and y was set to unity. Appropriate locations for 
the radial and downstream boundaries, R and L, were determined from a 
sequence of solutions a t  Re = 100. These showed that R could be set at 10, and 
L at 20, since the use of larger values changed the solutions insignificantly. 
Furthermore, these solutions agreed excellently with a solution for an infinite 
domain; the latter is a solution described in Grabowski (1974). (It was 
obtained using an infinite-to-finite transformation.) The grid system consisted of 
1891 points with 61 points in the x direction, 31 in the y direction, such that 12 
points were located in the intervals 0 < r < 1, 0 < z < 1. A time step of length 
0.1 1,  somewhat larger than the smallest real plane mesh width, was used, and 
convergence was assumed when changes in velocities were less than 0.0005 over 
100 time steps. Typically, 2000 to 4000 time steps were required, and each com- 
putation required from two to four minutes of computer time on the Lawrence 
Berkeley Laboratory CDC 7600 computer. 

4. Solutions and discussion 
A total of thirty-nine solutions with various combinations of a, V and Re have 

been obtained, and are presented in Grabowski (1974). The largest Reynolds 
number at  which solutions could be obtained over a reasonably wide range of a 
and V was 200. For qualitative purposes, several calculations at higher Reynolds 
numbers were performed using upwind differences to approximate the convection 
terms in the momentum equations. 
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Solutions 

Figures 1 (a)-(d) display stream surface contours in an axial plane, calculated 
from solutions for Re = 200, a = 1, and V = 0.85, 0.8944, 1-0 and 1.095. The 
Stokes stream function was determined a t  the computational mesh points by 
numerical integration of the velocity components, and contours were then 
determined by interpolation. Since these solutions represent steady flows, 
a fluid particle entering the solution domain at z = 0 proceeds downstream, 
spiralling along the stream surface on which it enters. 

For V less than about 0.85, the stream surfaces appear essentially cylindrical. 
Examples of such stream surface contours, obtained from solutions with 
Re = 200, a = 1, and V = 0.63 and 0-80, are presented in Grabowski (1974). 
As V increases beyond about 0.80, the stream surfaces become increasingly 
perturbed. At V = 0.85, a divergence of the surfaces near the axis is apparent in 
the downstieam portion of the domain (figure 1 ( a ) ) ,  and at V = 0.8944 the 
perturbation has moved upstream, and has the form of a small, well-pronounced 
bulge (figure 1 ( b ) ) .  Similar bulges were obtained experimentally by Sarpkaya 
(1971 a) ,  analytically by Bossel (1967), and numerically by Torrance & Kopecky 
(1971). 

The bulge moves upstream, and becomes a vortex breakdown a t  V = 1.0 
(figure 1 (c)). (For the sake of a precise criterion, we shall identify the occurrence 
of breakdown with stagnation on the axis.) The breakdown consists of a closed 
bubble or eddy of recirculating fluid, similar in shape to some of those observed 
by Sarpkaya (1971 a, b ) .  The stream surfaces within the bubble represent negative 
values of the stream function, and stagnation points are located on the axis a t  
the upstream and downstream ends of the eddy. Further increase in V ,  to 1.095, 
results in the more vigorous breakdown shown in figure l (d) .  The bubble is 
further upstream and is larger than in the previous case, although the two 
stagnation points have moved closer together. The initial expansion and 
contraction of the outer stream surfaces over the bubble are followed by a 
second expansion. The near entrainment into the bubble of the stream surface 
closest to the axis should especially be noted. Sarpkaya ( 1 9 7 1 ~ )  reported that 
fluid did not enter through the front of the bubble, but instead passed over 
it and entered from the back. Then, having mixed turbulently inside, fluid 
exited into a second core-like region, While turbulent mixing has not been 
included in this study, the similarity between figure 1 ( d )  and his photographs is 
striking. (See e.g. figure 2(a), plate 1.) A superposition of the stream surfaces 
shown in figure 1 (d )  and stream surfaces traced from figure 2 (a)  is displayed 
in figure 2(b)  (plate 1). The figure suggests that the second stream surface ex- 
pansion might be the axisymmetric counterpart to the spiral breakdown, which 
is almost always experimentally observed behind axisymmetric breakdown 
bubbles. 

Figure 3 shows the variation of the velocity a t  the vortex axis obtained from 
the solutions for which stream surface contours were presented in figure 1, with 
the addition of the solutions obtained with V = 0.63 and 0.80. Figures 4 and 5 
display, respectively, the pressure calculated on the row of grid points nearest 

34-2 
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FIGURE 1. Stream function contours. Re = 200, a = 1.  
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FIGURE 3. Velocity on vortex axis against axial location. Re = 200, a = 1. 
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the axis on which the pressure is defined,? and the swirl velocity a t  r = + for the 
six solutions. Since the pressure in the vortex core will always be less thanp,, the 
non-dimensional pressure is always negative. The axial variation of swirl at 
r = 4 is characteristic of its variation within the core. Clearly, the effect of 
increasing swirl is to make the retardation of the axial flow, associated with the 
divergence of the stream surfaces, increasingly more pronounced. The large 
decreases in the minimum axial velocity, shown in figure 3, corresponding to small 
increases in V ,  demonstrate the highly nonlinear interaction between the swirl 
and axial velocities. 

For low swirl ( B  = 0.63, 0.80), the axial flow first gradually decelerates and, 
although not shown in figure 3, subsequently accelerates slowly to the free-stream 
velocity. The pressure deficit in the core increases asymptotically toward zero, 
and the swirl velocity slowly decreases. 

In these low-swirl flows, axial gradients are much less than radial, so that the 
interaction of the pressure and the swirl may be examined using the quasi- 
cylindrical approximation aplar = v2/r (Hall 1966), which expresses t h e  balance 
of the centrifugal acceleration of a fluid volume with the restraining pressure 
force. Integration with respect to r from the axis to radial infinity, where 
I), = const., followed by differentiation with respect to z ,  yields 

Since viscous dissipation of swirl or, equivalently, diffusion of vorticity makes 
avfaz Q 0, the axial pressure gradient will be positive and will tend to decelerate 
the axial flow. However, IvavlaxI decreases continuously with z ,  so that shear 

scheme pressures are calculated a t  computational cell centres. 
t We note that the pressure on the axis is not obtained, because in the finite-difference 
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FIGURE 4. Pressure at r = O+ (about 0.04) against axial location. 
Re = 200, a = 1. Symbol key as for figure 3. 
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FIGURE 5. Swirl velocity a t  r = 0.5 against axial location. 
Re = 200, a = 1. Symbol key as for figure 3. 

forces are eventually able, after the initial axial flow retardation, to  accelerate 
the flow in the core to the free-stream velocity. For such a flow, the swirl velocity 
is essentially decoupled from the rest of the flow field, which it influences only 
through a small adverse pressure gradient. 

The behaviour of the higher swirl solutions (i.e. V = 0.8944, 1-0, 1-095), 
however, is quite different. In  these cases, the distribution of swirl velocity cannot 
be decoupled from the rest of the flow field. Figures 6(a)  and ( b )  display the 
axial and swirl velocity profiles, respectively, for the strongly swirling flow 
represented by the solution with Re = 200, 01 = 1 and V = 1.095. The axial 
velocity retardation arising from viscous dissipation of the swirl is large enough 
in these cases to require a significant amount of radial out.flow. Since, except for 
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FIGURE 6. Velocity profiles for Re = 200, a = I ,  V = 1.095. 
(a )  Axial velocity. ( b )  Swirl velocity. 

viscous effects, the angular momentum of a fluid particle is conserved as it moves 
radially outward, its swirl velocity must decrease. The bulge or breakdown bubble 
is thus a region of very low circumferential velocity. The reduction in swirl 
velocity resulting from radial outflow and diffusion is associated with a large 
increase in the pressure near the axis. But, since the adverse pressure gradient 
is negligibly small within the bubble, shear forces are able to accelerate the axial 
flow within the core; continuity then requires an inward motion of fluid toward 
the axis. In addition, owing to inertial effects, the fluid particles that were forced 
outward over the bubble move beyond the point of equilibrium between the local 
pressure gradient and the required centripetal acceleration; this also leads to an 
inward motion toward the axis. The combined inward flow, due to both of these 
factors, leads to an increase in swirl velocity, in order to satisfy angular momen- 
tum conservation, and to a corresponding decrease in pressure, which enhances 
the axial flow acceleration. Diffusion of vorticity once again becomes significant, 
reducing the swirl velocities near the axis, and, as before, inertia causes the now 
inwardly moving particles to overshoot the radial equilibrium position and, there- 
fore, to begin moving outward. Both of these lead to an adverse pressure gradient 
which, for the case a = 1, V = 1.095, nearly stagnates the axial flow once more. 
Obviously, while the dynamics are such that this process can repeat itself, 
diffusion and dissipation seem to bring it to an end quickly. 
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Figures 7 (a)-(e) display the stream function contours for several other solu- 
tions. Comparison of figures 7 (a) ,  (b)  and 1 (b)  shows the effect of a and, hence, 
axial momentum on the location and size of breakdown. As a is increased from 
0.3 (figure 7 ( a ) )  to 0-6 (figure 7 ( b ) ) ,  the bubble becomes smaller and is located 
further downstream. For a = 1.0 (figure 1 ( b ) )  it is reduced to a bulge, while for 
CI = 1.4 (not shown here) the stream surface contours appear as essentially 
straight lines. Figure 7 (c), which shows the stream function contours obtained 
from the solution with Re = 200, a = 0.6 and V = 1.095, should be compared 
with figure 1 (d).  At the lower value of a, the bubble is further upstream and the 
second retardation consists of a small region of reversed flow. Finally, figures 
7 ( d )  and ( e )  display the contours obtained with Re = 100, a = 1 and V = 1.095 
and 1.342. The breakdown bubble is very large in the latter figure, and is followed 
by a low-velocity region in which a second reversal occurs. This rather large 
low-velocity region may represent an early stage in the development of a very 
large scale flow reversal, similar to that obtained by Harvey (1962). 

Discussion 
Many of the theories of vortex breakdown lead to criteria for its onset that are 
based on the swirl angle, defined as tan-1 (v/w), upstream of breakdown. Swirl 
angles immediately upstream of breakdown were observed by Harvey (1962) 
and Sarpkaya (1971 a, b) to be between about 40 and 50". Theoretical predict,ions 
of the maximum swirl angle have been based on critical-state concepts (Squire 
1960). In  these breakdown is related to the existence of a critical state, in which 
a standing cylindrical wave can first be maintained. Theoretical predictions have 
also been based on the finite-transition concept (Benjamin 1962, 1965a, b, 1967). 
This views breakdown as a transition between two conjugate flow states, in 
analogy with the hydraulic jump phenomenon.? These predictions vary from 
45 (Squire 1960) to 62.5" (Bossel 1967), depending on the velocity profiles assumed 
for analysis. This is a considerable range of variation since the maximum value of 
v/w varies, therefore, from 1-0 t o  1.92. Based on the numerical solutions, the swirl 
angles a t  x = 0 corresponding to solutions exhibiting stagnation on the axis vary 
between about 44 and 51", as shown in figure 8.1 

Mager (1972) used Benjamin's (1962) test equation to evaluate the criticality 
of flows described by the velocity profiles assumed at z = 0 in the present study. 
Flow states thus identified with Benjamin's super- and subcritical regimes, and 
the critical state that separates them, are shown in an a, V plane in figure 9. 
Superposed on that figure are the values of v, and V for which solutions were 
obtained with Re = 200. (In the interest of clarity, the a and V for solutions 
with Re = 100 are not shown.) The figure also indicates which solutions exhibit 
reversed axial flow (or in the case of the solution obtained with a = 1 and 

t Benjamin (1962) defines a supercritical flow as one that cannot support axisymmetric 
standing waves, and a subcritical flow as one that can support such waves. Squire's (1960) 
critical state is the borderline state. The conjugate flow pair of the finite-transition theory 
consists of a super- and a subcritical flow, and the transition occurs from the foimer to  the 
latter. 

$ Swirl angles a t  z = 0 are used here for comparison with experimental swirl angles 
since in these solutions breakdown occurs very near the initial station. 
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FIGURE 7. Stream function contours for several other solutions. 
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FIGURE 8. Minimum axial velocity on axis against upstream maximum swirl angle. 
Open symbols, Re = 200; closed, Re = 100. 
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V = 0.8944, reduction to less than 1 % of the free-stream axial velocity). Based 
on these results, the breakdown solutions with Re = 200, a = 0.3, B = 0.8944, 
with Re = 200, a = 0-6, V = 1.095 and with Re = 100, a = 1, B = 1.342, 
presented earlier, were all obtained with subcritical upstream conditions. In  
general, no correlation was found between the occurrence of breakdown and the 
super- and subcriticality of the upstream conditions as represented in figure 9, 
whereas the finite-transition theory requires that the flow upstream of break- 
down be supercritical. The finite-transition theory, as it is currently formulated 
(see e.g. Hall 1972), seems unable, therefore, fulIy to account for the pheno- 
men0n.t The subcritical upstream conditions for these solutions, however, are 
not very far in the a, V plane from the boundary separating the sub- and super- 
critical regimes; and, since Benjamin’s test criterion strictly applies only to 
parallel and inviscid flows, neither of which is the case here, the possibility must 
be admitted that upstream conditions which according to Mager are subcritical 
could, in fact, be slightly supercritical in terms of being incapable of supporting 
axisymmetric standing waves. 

Computations with values of V large enough to ensure highly subcritical 
upstream conditions failed to converge. The authors believe that this is not 
related to the nature of subcritical flows, since calculations with large values of a 
(greater than 1-4), and V large enough to be of interest in this study, also did not 

t In most of the cases exhibiting breakdown, the breakdown occurs very close to  the 
initial station. It is therefore possible that, for the initially-subcritical flows, our numerical 
results represent the completion of a breakdown which has occurred upstream of our initial 
station, and that that breakdown developed from supercritical upstream conditions. (This 
interesting possibility was raised by a referee.) 



Solutions of Navier-Stokes equations for vortex breakdown 539 

I I I I I I 

0.2 0.4 0.6 0.8 1 .o 1.2 
V 

FIGURE 9. The a, V plane. Closed and open symbols represent upstream conditions for 
which flow reversal respectively was and was not obtained. -- --, critical-state locus; 
-_ , Mager’s discontinuity locus ; ---, interpolated curve representing upstream con- 
ditions expected t o  yield solutions with a minimum axial velocity of zero. 

converge. The upstream conditions in these cases were highly supercritical (again 
on the basis of figure 9). The failure of the calculations with apparently highly 
super- and subcritical upstream conditions is probably related to the fact that, 
for large a and V ,  the effective Reynolds number of the flow (i.e. the charac- 
teristic ratio of convective to diffusive momentum transport) may be significantly 
larger than the nominal (core) Reynoldsnumber, and require a finer mesh system. 
Numerical calculations a t  a fixed core Reynolds number could thus suffer 
degradation of accuracy, and could eventually fail as a or V are increased. 

An idea originally suggested by Gartshore (1962, 1963), and further elucidated 
by Hall (1967), is that the location and occurrence of vortex breakdown can be 
predicted by the appearance of discontinuities in solutions of the quasi-cylindrical 
equations : a parabolic, boundary-layer-like system, valid for vortex flows, in 
which radial gradients are much larger than axial gradients. This was taken up 
by Mager (1972). A modification of Mager’s approach in fact yielded predictions 
of the location of breakdown in diverging tubes under a wide range of conditions, 
which are in very good agreement with experimental results (Sarpkaya 1974). In 
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Mager's integral analysis, a and V are form factors for velocity profiles assumed 
to approximate the axial and circumferential velocity distributions throughout 
the core. The integral approach then consists of the determination of a and V as 
functions of x from their given upstream values. The analysis indicates that, if 
a certain parameter 0, is leas than a critical value 0; = - 0.163989, then there 
will be a continuous solution; however, if 01 > 0f, discontinuities will arise, 
marked by the appearance of infinite gradients, regardless of the apparent sub- 
or supercriticality of the upstream flow.? These discontinuities are assumed to 
represent the onset of breakdown. The parameter 8, is the axial momentum flux 
deficit in the core, which is an invariant in any quasi-cylindrical vortex flow, plus 
a term dependent on the fixed vortex circulation. 0, is determined from the 
conditions a t  z = 0, and in general decreases with the assumed value of a and 
increases with the assumed value of V.  The locus of a and V for which 8, = 0f is 
shown in figure 9, along with a line representing the values of a and V at which 
the integral solutions were found to become discontinuous. The qualitative 
similarity between this discontinuity curve and that representing Benjamin's 
critical state is not unexpected, in the light of Hall's (1972) demonstration of 
the equivalence of the critical state and the condition that the inviscid cylindrical 
stream function admit discontinuous solutions. 

The relationship between the calculated minimum axial velocity on the axis 
and 8, is indicated in figure 10 for all solutions with Re = 100 and 200. A correla- 
tion in these results, except for the two a = 0.3 cases, is apparent, and is in 
accord with Mager's integral analysis. The two a = 0.3 cases are anomalous in 
that the minimum axial velocity occurs a t  the initial station, z = 0. Interpolation 
for the value of 8, which corresponds, for any a, to a minimum velocity of zero 

f The particular value of 8, at which discontinuities will first arise would be expected 
to vary with the assumed form of the velocity profilea. 
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yields for Re = 200 a limited range of 8,, from - 0.06 for a = 1-4 to - 0-025 for 
a = 0.3, Thus, it seems that the occurrence of breakdown in the numerical 
solutions may be approximately correlated with a critical value of el, which for 
R e  = 200 is about - 0.05, as suggested by Mager’s analysis. A line representing 
the locus of a and V for which 8, = - 0.05 is included in figure 9. Also drawn in 
that figure is a very similar curve, determined by interpolation, representing the 
values of a and V for which numerical solutions with Re = 200 are expected to 
predict a minimum axial velocity of zero. Numerical solutions with upstream 
conditions (i.e. a and V )  to the right of this ‘incipient breakdown’ locus are 
expected to exhibit breakdown. 

The minimum axial velocities for the Re = 100 cases also collapse onto a single 
curve. The amount of scatter in these results is less than the Re = 200 cases, 
perhaps because the solutions at this lower Reynolds number may tend to be 
more accurate. The critical value of 8, is about 0.01 for both a = 0.6 and 1.0. 
Should the trend of decreasing critical 8, with increasing Re continue, the critical 
8, could possibly approach Mager’s prediction for very high Reynolds numbers. 
This, however, is only a hypothesis. Also, Of is the value of 8, at  which a large 
axial gradient will appear, and it might be less than the value corresponding to 
axial flow reversal.? 

Figures 11 ( a )  and (b)  show a comparison, for several Reynolds numbers, of the 
axial variation of W I , = ~  for a = 1, and V = 0.63 and 0.8944, respectively. The 
calculations with Re = 500 and 1000 were performed using upwind differencing 
and are probably only suggestive of the actual flows. Figure 11 (a )  shows that 
the very mild axial flow retardation in the solutions with V = 0.63 becomes less 
pronounces as Re increases. This is in accord with the analyses of both Gartshore 
(1962, 1963) and Mager (1972), in which Re enters the solution only as a scale 
factor for z. Figure 11 (b) ,  however, suggests that solutions which exhibit break- 
down at  relatively low Reynolds numbers should continue to do so as Re is 
increased. It is therefore expected that, while this study has obtained quantitative 
information for relatively low Reynolds numbers only, the conclusions reached 
here can be extended to higher Reynolds number flows. 

Forms of breakdown 

In  order to explain the appearance of an axisymmetric bubble followed by a spiral 
breakdown in highly swirling flows, and the appearance of only the spiral in 
flows with less swirl, Mager (1972) argued that the axisymmetric bubble results 
from a cross-over, ahead of the discontinuity, of the solution from the upper to 
the lower branch of an integral curve with the same value of 8,. It was suggested 
that this cross-over is analogous to Benjamin’s finite transition; that the dis- 
continuityappears physically as the spiral breakdown; and that the crossover, if it 
occurs, appears as the axisymmetric bubble. Such a hypothesis does not explain 
Sarpkaya’s ( 1974) accurate predictions of the location of both axisymmetric 
and spiral breakdowns, based only on the appearance of discontinuities. The 

t We note in this connexion that, at the axial locations at which the various quasi- 
cylindricaI solutions (Hall 1967; Bossel 1971 ; Mager 1972) fail, the axial velocity is generally 
greater than zero by a significant fraction of the free-stream axial velocity. 
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FIGURE 11. Velocity on vortex axis for a = 1 and several Reynolds numbers. (a) V = 0.63; 
( b )  V = 0.8944. 
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following comments represent, we believe, an explanation of the various forms of 
vortex breakdown consistent with the numerical solutions obtained in this study 
and the observations of Sarpkaya (1971 a, b). 

In  flows where the swirl velocities are not large, the axial retardation may be 
such as to produce a region of flow in the vortex core unstable to certain spiral 
disturbances. The introduction of such a disturbance could then result in the 
development of a spiral breakdown. Sarpkaya (1971 b) has, in fact, suggested 
that the spiral is the result of an instability in flows with moderate swirl; and the 
agreement pointed out by Ludwieg (1 965) between predictions based on his 
theory that breakdown is the result of a spiral instability and the measurements 
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of Kirkpatrick (1964) and Hummel (1965) would then be explained. As Hall 
(1972) suggested, however, these instabilities might not occur in flows with high 
swirl, and the retardation of the axial flow would then result in the axisymmetric 
bubble. For large values of V ,  however, the second retardation that occurs in the 
numerical solutions may result in a region of flow behind the bubble unstable to 
a spiral disturbance, in which case the flow could appear as an axisymmetric 
bubble followed by a spiral. Such a possibility was originally suggested by 
Benjamin (1967). 

5. Conclusions 
Numerical solutions of the Navier-Stokes equations for axisymmetric swirling 

flows were obtained, and were shown to exhibit many of the characteristics of 
vortex breakdown. They suggest that the occurrence of breakdown can be 
correlated with the value of a parameter which is a measure of the axial momen- 
tum flux deficit, or flow force deficiency, in the vortex core. Solutions exhibiting 
breakdown were obtained with upstream conditions which, according to 
Benjamin’s criterion, are subcritical. The finite-transition theory, as it is currently 
formulated, therefore, seems inconsistent with the numerical results, although 
a reformulation to include the effects of the large axial gradients encountered 
in them is required before a complete comparison can be made.? In this connexion, 
the reader should recall the comments concerning our inability to obtain solu- 
tions for upstream conditions that are highly super- or subcritical. Although we 
suggested that this difficulty is associated with purely numerical considerations, 
we cannot rule out the possibility that, in the case of subcritical upstream con- 
ditions, the inability to obtain solutions is, in fact, associated with the particular 
characteristics of subcritical flows. 

In  the absence of an externally-imposed pressure gradient or flow divergence, 
breakdown results from the diffusion and convection of vorticity away from the 
vortex core. When the axial momentum of the flow near the axis is sufficiently 
small compared with the resulting pressure forces, the retardation is sufficient 
to result in stagnation and flow reversal. The calculations demonstrate that the 
nonlinear coupling between the axial and swirl velocities leads to a very rapid 
onset of breakdown when it occurs, and they suggest, as Hall (1972) proposed, 
that breakdown is a critical state to which a vortex with sufficient swirl can be 
reduced by diffusion of vorticity, flow divergence and pressure forces. 

Finally, it was suggested that retardations which appear in solutions with 
moderate values of swirl might be unstable to spiral disturbances. In  that case, 
the physical manifestation of breakdown might be the single asymmetric spiral 
observed in experiments. Of particular significance is the fact that the numerical 
solutions for large values of swirl exhibit a second axial flow retardation. If the 
first retardation were stable and the second unstable, the physical manifesta- 
tion might be the axisymmetric bubble followed by a spiral as observed in 
experiments. 

See also the footnote on p. 538. 
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I I 
FIGURE 2. ( a )  Axisymrnetric bubble followed by spiral breakdown (from Sarpkaya 1971 a) .  
( b )  Comparison of stream function contours, traced from (a ) ,  with those calculated for 
Re = 200, a = 1 ,  V = 1.095. The latter are uniformly scaled, for best geometric agreement. 
Location of spiral breakdown ronglily coincides wit11 calculated secondary stream surface 
clivcrgence. 
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